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We introduce a hierarchical framework we call Complex Structured Decision Making
model for complexly structured knowledge representation in intelligent decision making.
We show that our model extends non-hierarchical (flat) decision making models to hierar-
chical decision making models that are similar to comprehensible human decision making
processes. Further, we make an argument that hierarchial representation of knowledge in a
Complex Structured Decision Making Model simplifies the approximation of aggregation
functions to easily adapt to the underline relation of the system. Additionally, using a real
world complex structured data set, we show that hierarchically organized Fuzzy Integrals,
e.g. Choquet Integral, and Sugeno Integral and Fuzzy Signatures outperform these non-
hierarchical Fuzzy Integrals.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Human decision making is a comprehensible hierarchical process, in which cognition processes lead to the selection of a
set of actions among many variations. We are inspired by the hierarchical organization of the human decision making pro-
cess as it reduces the space and time complexity, as it may require less information compared to a flat organization, and it
simplifies the approximation of the aggregation of information. It is obvious that the hierarchical organization of data re-
duces the space and time complexity of the decision making model [12,22]. The hierarchical structure of a decision making
system makes it possible to neglect some input information during the decision making [30,36] whereas non-hierarchical
(‘flat’) decision making systems always need all the input information for their decision making process [38,50]. This is
an additional advantage of hierarchical decision making systems in situations when all the information may not be available.
As the hierarchical systems organize data into small groups of hierarchies, it is easy to approximate the aggregations of these
small sets of information to achieve the final result. That is, a hierarchical decision making system uses a set of hierarchically
organized local aggregation functions to approximate the desired global preference relation of the system. On the other
hand, flat decision making systems try to approximate the global preference relation using a single aggregation function. This
may reduce the accuracy of a flat decision making system, especially when large numbers of input variables are available.

In this paper we introduce our Complex Structured Decision Making (CSDM) model, which can be seen as a hierarchically
extended application of the Multi-criteria Decision Making (MCDM) paradigm [10]. A CSDM model represents knowledge in
the form of hierarchically organized information. We investigate Fuzzy Integrals [13] and Fuzzy Signatures [27,29] using the
Weighted Relevance Aggregation Operator (WRAO) [28] for the selection of best aggregation modules for the CSDM method.
However, Fuzzy Integral models are computationally very impractical for large data sets, as they need 2n parameters, where
n is the number of input dimensions. Thus, the computational cost increases significantly with any increase of the number of
. All rights reserved.
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input dimensions. Our Complex Structured Decision Making approach uses hierarchical structured information representa-
tion and advanced aggregation functions to handle complexly structured data more efficiently and effectively.

In Section 2 we discuss the Multi-criteria Decision Making (MCDM) paradigm and fundamentals of Fuzzy Integrals as
aggregation methods for MCDM. In Section 3, we introduce the Complex Structured Decision Making (CSDM) model and fur-
ther propose fuzzy signatures with Weighted Relevance Aggregation Operator as a practical model for CSDM. In Section 4 we
show two methods of extracting fuzzy measures and WRAO for Fuzzy Integrals and Fuzzy Signatures, respectively. Then in
Section 5 we show the various results of two experiments with real world complex problems, where one experiment is based
on personnel management and other experiment is based on medical diagnosis. In this section we also introduce the concept
of fuzzy classification error for better visualization of test results of an experiment compared to sum of squares error.

2. Multi-criteria decision making and fuzzy integrals

In this section we discuss the fuzzy measure concept and the Multi-criteria Decision Making (MCDM) paradigm. The
MCDM is a well-known paradigm for intelligent decision making and is widely used compared to the Decision Making Under
Uncertainty paradigm. Next, we discuss fuzzy measures and Fuzzy Integrals, in order to use them for aggregation in MCDM.

2.1. Fuzzy measure

The main characteristic of classical measures theory is additivity. Many engineering applications were successfully de-
signed with this property, but when it comes to soft computing applications [39,41,43] the additivity property can be too
rigid. The fuzzy measure concept is a generalization of additive measure concept as it replaces the additivity by the weaker
condition of monotonicity [37,18,17].

Definition 1. A fuzzy measure on a discrete set N = {1, . . . ,n} is a set function v :2N ? [0,1] that satisfies the following
conditions:

(i) Boundary: v(;) = 0, v(N) = 1
(ii) Monotonicity: A,B # N and A # B then v(A) 6 v(B)

2.2. Multi-criteria decision making paradigm

We recall the Multi-criteria Decision Making (MCDM) paradigm [10,45,19].

Definition 2. A Multi-criteria Decision Making (MCDM) method is a triple (N,X,�), where

(i) N = {1, . . . ,n} is the set of criteria to satisfy
(ii) X is the Cartesian product, X = X1 � X2 � � � � � Xi that corresponds to the set of alternatives Xi, being the evaluation

scale related to criterion i (i 2 N)
(iii) � is a preference relation on X

An aggregation function Mv :Ln ? L is defined from a fuzzy measure v and local utility function ui :Xi ? L, where (i 2 N),
such that

Uv(x) :¼Mv[u1(x1), . . . ,un(xn)].

where x 2 X and Uv : X ! R is a global preference function, which satisfies

x � y() UvðxÞP UvðyÞðx; y 2 XÞ
Here x = (x1, . . . ,x n) is the result of alternatives after applying their criteria.

The following two examples describe an applications of the MCDM to a real world scenario.

Example 1. A personnel manager has decided to increase the salary of 3 employees, called Smith, McCreath, and Graham.
The problem is to find the appropriate salaries for the 3 employees (or technically ‘‘alternatives’’) using the criteria age,
contacts, and experience. We can write the rating of Smith’s salary to be a High Salary (HS), using the MCDM method as,

HS(Smith) = Mv[u1(age(Smith)),u2(contacts(Smith)),u3(experience(Smith))], where Mv is an appropriate aggregation func-
tion and u1, . . . ,u3 are local utility functions, which are defined as in Definition 2, being mappings from the range of
(criteria)i :? L.
Example 2. We consider the problem of finding a Qualitative Grading (QG) scheme for a high school with respect to follow-
ing 3 subjects: mathematics (M), physics (P), and literature (Lit.) [15]. Let us assume school has 3 students namely Euler, Ein-
stein, and Hercules. For an example, we can write the Qualitative Grade of Euler’s total marks, using the MCDM as,
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QG(Euler) = Mv[u1(Math(Euler)),u2(Physics(Euler)),u3(Literature(Euler))], where Mv is an appropriate aggregation function
and u1, . . . ,u3 are local utility functions, which are defined as in Definition 2, being mappings from the range of (criteria)i :? L.
2.3. Sugeno integral

Fuzzy Integrals were introduced by Sugeno (they also called Sugeno Integrals) [38,37].

Definition 3. Let v be a normalized fuzzy measure on X, whose elements are denoted x1, . . . ,xn. The discrete Sugeno Integral
of a function f :X ? [0,1] can be written as
Svðf Þ ¼
_n
i¼1

ðf ðxðiÞÞ ^ vðAiÞÞ ð1Þ
where �(i) is a permutation on X such that f(x(1)) 6 f(x(2)) 6 � � � 6 f(x(n)), A(i) = {x(i), . . . ,x(n)}, and f(x(0)) = 0
2.4. Choquet integral

The Choquet integral was introduced to the fuzzy community [42,40] by Murofushi and Sugeno [34]. During the decade
since its introduction, the Choquet Integral has gained a considerable attention and success [14,15,49].

Definition 4. Let v be a fuzzy measure on X, whose elements are denoted by x1, . . . ,xn. The discrete Choquet Integral of a
function f : X ! Rþ can be written as
Cvðf Þ ¼
Xn

i¼1

ðf ðxðiÞÞ � f ðxði�1ÞÞÞvðAiÞ ð2Þ
where �(i) is a permutation on X such that f(x(1)) 6 f(x(2)) 6 � � � 6 f(x(n)), A(i) = {x(i), . . . ,x(n)}, and f(x(0)) = 0
The Fuzzy Integral is a powerful tool in MCDM as it expresses a certain kind of interaction between different criteria.

Some successful applications of Fuzzy Integrals in various fields, such as subjective evaluation, design of speakers, risk ass-
esment and time series modeling, can be found in [15,6]. Unfortunately, all Fuzzy Integrals suffer from the problem of expo-
nential growth of fuzzy measure parameters (weights) with respect to the number of criteria. Example 3 shows the
expressive power of Choquet Integral as compared to the conventional weighted mean method.

Example 3. We continue the students qualitative examination marks classification problem in Example 2. The teacher of
these students has to evaluate them according to their level in 3 subjects: Mathematics (M), Physics (P), and Literature (Lit.).
She has to decide the evaluation of students according to the following criteria,

(i) Scientific subjects (mathematics and physics) are more important.
(ii) The 2 scientific subjects are similar, that is if a is student good in one of these subjects, that student is also good at the

other subject.
(iii) Students good at scientific subjects and literature are rather uncommon and must be favored.

As in Table 1, the teacher decides the weights of 3, 3, and 2 for the subjects mathematics, physics, and literature
respectively for a weighted mean type evaluation. Table 2 shows the fuzzy measure parameters for the same students’
evaluation. Finally, Table 3 shows the corresponding students’ data and the results (last 2 columns) of weighted mean and
Choquet Integral based evaluations.

According to the results of the 2 evaluations, it is clear that the Choquet Integral has better ranked the students according
to teacher’s preference function.

3. Complex Structured Decision Making Method

In this section we first introduce the Complex Structured Decision Making (CSDM) model as a hierarchically extended
application of the Multi-criteria Decision Making (MCDM) paradigm [10]. CSDM models represent knowledge in the form
of hierarchically organized information for better modeling of the decision making process. Next we discuss the theory of
Table 1
Weights for weighted mean.

M P L

3 3 2



Table 2
Fuzzy measure parameters (weights).

M P L MP ML PL MPL

0.45 0.45 0.3 0.5 0.9 0.9 1

Table 3
Qualitative grading of students using WM & CI.

Student Mathematics Physics Literature Weighted mean Choquet integral

Euler 18 16 10 15.25 13.9
Einstein 10 12 18 12.75 13.6
Hercules 14 15 15 14.62 14.9
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fuzzy signatures [27,29] and the Weighted Relevance Aggregation Operator (WRAO) [28] as an aggregation selection for
CSDM model.

3.1. Complex Structured Decision Making

In general, decision making systems need to handle problems which are structurally complex [12,47] and have a global
preference [9] between the outcomes. The structural complexity of a problem expresses the correlation of different input
dimensions, in a hierarchical structure. Thus, the structural complexity expresses the ‘‘interconnectedness’’ of the system
based on the correlations of the inputs of a system. The ideal hierarchical organization of a decision problem enhances
the accuracy of the results and reduces computational space and time complexity. The global preferences of the outcomes
of the system against the set of input dimensions is a relation, which can be approximated using a hierarchically organized
set of non-homogeneous aggregation functions. We call this the ‘‘interdependent feature’’ of the system as it expresses the
inter-dependance of the input dimensions in order to preserve the monotonicity of the system. We argue that hierarchical
organization of input data will simplify the approximation of the global preference relation of a system, by using sets of local
preferences for a lower number of input dimensions, which are arranged hierarchically. Most existing methods focus only on
structural complexity [36,8,7] or on the interdependent feature of the problem with non-hierarchical approaches [50,38].

The MCDM model is mainly used for generation of decision making systems based on the underlying preference relation
of the decision making problem. As we discussed in the introduction, we are inspired by the human comprehensibility of
decision making, where information is organized hierarchically. In this paper, we present a method in which we consider
both structural complexity and the interdependent features of the problem simultaneously to construct the decision making
system.

Definition 5. A Complex Structured Decision Making (CSDM) method is a triple (N,X0,�), where

(i) N = {1, . . . ,n} is the set of criteria to satisfy,
(ii) X0 is the Cartesian product, X0 ¼ X 01 � X02 � � � � � X 0m, where m 6 2n � 1 and X 0i 2 q�ðXÞ such that

q�ðXÞ ¼ f
Q

i2SXi; S # N with S – ; and S – Ng corresponds to the set of alternatives Xi being the evaluation scale
related to criterion i,

(iii) � is a preference relation on X0.

Now let x0 ¼ ðx01; . . . ; x0kÞ 2 X0, where k 6 2n � 1 and x = (x1, . . . ,xn) 2 X.

(a) Uv
0 is a preference function s.t. Uv

0 : X0 ! L.
(b) Mv

0 is an aggregation functions s.t. Mv
0 : Lk ! L.

(c) {ui} is the set of local utility functions s.t. ui :Xi ? L.

Where
Uv
0ðxÞ :¼ Mv

0 ½u01ðx01Þ; . . . ;u0kðx0kÞ�

andu0jðx0jÞ ¼
uiðxiÞ; if x0j 2 x

Uv
j ðx0jÞ; otherwise

(

Note that, Uv

j ðx0jÞ recursively follows this definition to define the next hierarchy.
In this definition, i 2 N, j 2 [1 . . .k], and v is a fuzzy measure.
Further, the preference relation Uv

0 is monotonic, similar to Definition 2.
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According to this definition, it is clear that the original form of the MCDM can be obtained when X0 reduces to X and k = n.
In practical applications, a more restricted case of CSDM i.e. k 6 n, needs to be applied to reduce the computational complex-
ity. In the following two examples, we illustrate CSDM in practice. Example 4 expresses a simple situation and Example 5
expresses a more complex situation.

Example 4. The Fig. 1(a) shows a complex structure for a decision problem with criteria {C1,C2,C3}.
Let us assume an alternative, a = (a1,a2,a3) and in Fig. 1, each xi = Ci(ai). Then, we get x = (x1,x2,x3) and

q⁄(x) = {x1,x2,x3,x1x2,x1x3,x2x3}. Further, x00 ¼ ðx1x2; x3Þ.
Now, we can formulate the first level of the complex structured decision problem as:
Uv

0ðx1x2x3Þ ¼ Mv
0ðu01ðx01Þ;u3ðC3ða3ÞÞÞ

and now u01ðx01Þ recursively follows the Definition 5 to create a further hierarchy i.e. now we get x = (x1,x2), q⁄(x) = {x1,x2},
and x01 ¼ ðx1; x2Þ. According to Fig. 1(a), we write the new branch as,

Uv
1ðx01Þ ¼ Mv

1ðu1ðC1ða1ÞÞ;u2ðC2ða2ÞÞÞ
Example 5. The Fig. 1(b) shows a complex structure for a decision problem with criteria (C1,C2,C3,C4) and in Fig. 1, xi = Ci(ai).
Let us assume an alternative, a = (a1,a2,a3,a4). Then, we get x = (x1,x2,x3,x4) and q⁄(x) =

{x1,x2,x3,x4,x1x2,x1x3,x1x4,x2x3,x2x4,x3x4,x1x2x3, . . .} Further we have x00 ¼ ðx1x2x3; x4Þ.
Now we can formulate the first level of the complex structure as:
Uv

0ðx1x2x3x4Þ ¼ Mv
0 ðu01ðx01ÞÞ;u4ðC4ða4ÞÞÞ

Now u01ðx01Þ recursively follows the Definition 5 to create the next level i.e. now we get x = (x1,x2,x3),
q⁄(x) = {x1,x2,x3,x1x2,x1x3,x2x3}, and x01 ¼ ðx1; x2x3Þ. According to Fig. 1(b), we write the new branch as,
Uv

1ðx01Þ ¼ Uv
1ðx1x2x3Þ ¼ Mv

1ðu1ðC1ða1ÞÞ;u012ðx012ÞÞ.
Again u012ðx012Þ recursively follows the Definition 5
i.e. now we get x = (x2,x3), q⁄(x) = {x2,x3}, and x012 ¼ ðx2; x3Þ. According to Fig. 1(b), we write the new branch

as,Uv
12ðx012Þ ¼ Mv

2ðu2ðC2ða2ÞÞ;u3ðC3ða3ÞÞÞ

It is clear that according to Definition 5, to represent Complex Structured Decision Making Models, we need a hierarchical
aggregation function that can facilitate the formulation of both structure and multi-aggregations. It is already well known in
fuzzy theory that we can use fuzzy sets to represent local utility functions [4,5] in Multi-Criteria Decision Making problems.
Therefore, we use the same approach in the Complex Structured Decision Making method. Next, we discuss the concept of
Fuzzy Signatures as a practical approach to the Complex Structured Decision Making (CSDM) model.

3.2. Hierarchical fuzzy signatures

Fuzzy signatures can describe, compare and classify objects with complex structures and interdependent features [26,30].
The hierarchical organization of fuzzy signatures expresses the structural complexity of a problem effectively. The hierarchi-
cally organized set of aggregation functions of fuzzy signature can be used to approximate the underline preference relation
of the problem easily compare to conventional flat approaches.

3.2.1. Hierarchical fuzzy signatures
Fuzzy signatures are fuzzy descriptors of real world objects. They represent objects with the help of a sets of quantities

that are arranged in a hierarchical structure expressing interconnectedness and set of potentially non-homogeneous quali-
tative measures, which are the interdependencies among the quantities of each set, to aggregate these hierarchies. Thus, fuz-
zy signatures are capable of handling problems in the Complex Structured Decision Making context.
Fig. 1. Complex structures of two decision problems.



Fig. 2. Example fuzzy signature.
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Additionally, the fuzzy signature concept is a good solution to the rule explosion problem in fuzzy logic, as fuzzy signa-
tures are hierarchically structured and inherently sparse. In this section, we discuss the concept of fuzzy signatures as a prac-
tical approach to the Complex Structured Decision Making (CSDM) model. Now, we recall the fuzzy signature concept
introduced in [21].

Definition 6. Fuzzy Signature is a VVFS, where each vector component is another VVFS (branch) or a atomic value (leaf), and
denoted by,
1 In t
whole d
A : X ! ½ai�ki¼1 �
Yk

i¼1

ai

 !
; ð3Þ
where
ai ¼
½aij�ki

j¼1; if a branch

0;1½ �; if leaf a

(

and P describes the Cartesian product.

The Fig. 2(a) shows an example fuzzy signature [48]. This fuzzy signature describes an individual SARS patient, which is a
data point1 among many SARS data collected in the year 2003 [20,35,44]. The Fig. 2(b) shows the hierarchical view of the fuzzy
signature shown in Fig. 2(a).

Fig. 3 shows an example aggregation of a fuzzy signature using max and min as the aggregation functions. In this example
the final aggregated value of the fuzzy signature S of data point d is 0.6. Now, we introduce our notation in Lemma 2 to rep-
resent this value.

Lemma 1. Let Sdk
be a fuzzy signature that represent the data point dk. The notation Sdk

ðdkÞð2 ½0;1�Þ represents the final
aggregated value of the fuzzy signature Sdk

.
Now, using Lemma 2, we can write the final atomic value of the fuzzy signature S in the Fig. 3 as S(d) = 0.6.

3.2.2. Polymorphic fuzzy signatures
A fuzzy signature is a real world descriptor of an individual data point. Thus, in the initial concept of fuzzy signature, as

shown in Fig. 2, one fuzzy signature is needed to model each individual data point of that problem. But in most situations, in
real world decision making applications, people may not be interested or able to invest a large amount of time and funding in
achieving the best possible solution.

In some situations, we observed [29,32] that we may be able to find a single fuzzy signature for a set of individual data
points and for reducing the number of fuzzy signatures required to implement a decision making model. We call such a fuzzy
signature a Polymorphic Fuzzy Signature (PFS) for the set of data points it represents.

Definition 7. Let X be the universe of the parent node and X1 � X2 � � � � � Xn be the domain of n children. The mapping
between parent and children of the polymorphic fuzzy signature bSi is as follows:
bSi : X ! ai
� �n

i¼1 �
Yn

i¼1

ai

 !
: ð4Þ
he fuzzy signature concept, a data point means a collection of data which represents an event, e.g. in medical applications, a patient’s data record of a
ay can be considered a single data point [48].



Fig. 3. Aggregation of fuzzy signatures.
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ai ¼
½aij�ni

j¼1; if branch ðni > 1Þ
FiðxiÞ; if leaf

(
ð5Þ
Where Fi is a fuzzy subset of universe Xi such that Fi(xi) 2 [0,1] and xi 2 Xi.
As a summery of the Definition 7, unlike in ordinary fuzzy signatures, in the polymorphic fuzzy signatures leaf nodes are

fuzzy sets. Fig. 4 shows an example polymorphic fuzzy signature structure with two arbitrary levels g and (g + 1). In this fig-
ure, the node q, . . . , i decomposes to another set of branches: aq;...;ij

� �n
l¼1. The branch q, . . . , i1 is a leaf that defines inputs from a

fuzzy subset Fq,. . .,i1.

Lemma 2. Let dSiðdkÞð2 ½0;1�Þ represents the degree of match between polymorphic fuzzy signature Ŝi and the data point dk.
Below, we formulate an objective function to measure the optimality of a polymorphic fuzzy signature [29,32]. This could

be especially used for learning of polymorphic fuzzy signatures from data.

Definition 8. Let {d1,d2, . . . ,dn} be a collection of data points for a certain problem and let A ¼ fSd1
; Sd2

; . . . ; Sdn
g be the

collection of fuzzy signatures they represent respectively. Further let B ¼ fbS1; bS2; . . . ; bSmg be a set of possible polymorphic
fuzzy signatures for the same problem. Then bSlð2 BÞ is the optimal polymorphic fuzzy signature of the set A if:
Xn

i¼1

jbSlðdiÞ � SiðdiÞj 6
Xn

i¼1

jbSkðdiÞ � SiðdiÞj 8bSk 2 B ð6Þ
The following example illustrates the concept of the optimal PFS.
Example 6. The set of fuzzy signatures,{Sa,Sb,Sc,Sd} in Fig. 5 describe four different SARS patients’ data {da,db,dc,dd}.
The fuzzy signature in Fig. 6 is a possible Polymorphic Fuzzy Signature, which may drop d in Eq. (6) to a low value, for the

set of fuzzy signatures shown in Fig. 5.
In [29], we have investigated the aggregation of PFSs. From the results of that experiment we concluded that the weighted

aggregation of PFSs are more accurate compared to non-weighted aggregation. In the next sub-section, we discuss a
weighted aggregation method for PFS.
Fig. 4. An arbitrary polymorphic fuzzy signature (PFS).



Fig. 5. A Set of SARS fuzzy signatures.

Fig. 6. A SARS polymorphic fuzzy signature.
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3.2.3. Weighted Relevance Aggregation (WRA)
Weighted Relevance Aggregation provides an additional meaning to the fuzzy signature structure by introducing the

weighted relevance of each branch to its higher branches of the fuzzy signature structure. That is, the weighted relevance
reflects the idea that some branches provide higher values to the next level of the fuzzy signature structure. And some other
branches in the same parent branch provide relatively lower values to the next level (or to the parent branch) of the fuzzy
signature structure. In this way WRA enhances the accuracy of the final results of the PFS. In [33], we discussed a method of
learning weights in WRA automatically. In [32], we have shown the successfulness of the weight extraction method in [33].

We further generalized the weights and the aggregation into one operator called the Weighted Relevance Aggregation
Operator (WRAO) [28]. This subsection briefly describes the WRAO [28] for fuzzy signatures. In [31], we showed that WRAO
enhances the accuracy of the results of fuzzy signatures, by allowing better adaptation to the meaning of the decision making
process. Further, WRAO helps to reduce the number of individual fuzzy signatures needed for the decision making process,
by adding the ability to include more data points into one Polymorphic Fuzzy Signature.

Now, we recall the definition of WRAO in [28]. All the notation in the Definition 9 refer to the arbitrary fuzzy signature in
Fig. 7.

Definition 9. The WRAO of an arbitrary branch aq. . .i with n sub-branches aq. . .i1,aq. . .i2, . . . ,aq. . .in 2 [0,1], and weighted
relevancies, wq. . .i1,wq. . .i2, . . . ,wq. . .in 2 [0,1], for a fuzzy signature is a function g : [0,1]2n ? [0,1] such that,
aq...i ¼
1
n

Xn

j¼1

aq...ij �wq...ij
� �pq...i

" # 1
pq...i

ð7Þ



Fig. 7. An arbitrary fuzzy signature.
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The WRAO must satisfy the following three properties,

(i) wq. . .ij 2 [0,1]
(ii)

Wn
j¼1wq...ij 6 1

(iii) pq...i 2 R� f0g

In [28], we prove the following two properties for WRAO.

Theorem 1. Let aq. . .i be an arbitrary branch with n sub branches, aq. . .i1,aq. . .i2, . . . ,aq. . .in, and weighted relevancies,
wq. . .i1,wq. . .i2, . . . ,wq. . .in, for an arbitrary fuzzy signature (Fig. 7). Then WRAO in Definition 9 holds the following properties.

(i) Partially Idempotent w.r.t aq. . .ij, when all wq. . .ij are fixed and vice versa,
(ii) Commutative, and

(iii) Partially Monotonic w.r.t aq. . .ij when all wq. . .ij are fixed and vice versa.

The partial idempotency and monotonicity is adequate to satisfy the requirement to be an aggregation function [4] as
weights, wq. . .i1,wq. . .i2, . . . ,wq. . .in, in WRAO are fixed for any instance of a fuzzy signature in the decision making phase,
and both weights and aggregation operators vary simultaneously only in the learning phase.

Theorem 2. The WRAO in Definition 9 holds the following characteristics.

(a) pq. . .i ? 0 then WRAO ? geometric mean
(b) limpq...i!þ1gðaq...i1; . . . aq...in; wq...i1; . . . ;wq...inÞ
¼ maxðaq...i1wq...i1; . . . aq...inwq...inÞ
(c) limpq...i!�1gðaq...i1; . . . aq...in; wq...i1; . . . ;wq...inÞ
¼ minðaq...i1wq...i1; . . . aq...inwq...inÞ
(d) p = 1 then WRAO ? arithmetic mean
(e) p = � 1 then WRAO ? harmonic mean
Example 7. Now, we return to the student students’ qualitative examination marks classification problem, from Example 3.
Fig. 8 shows a PFS for the set of student data shown in Table 3. Further it shows the weighted relevancies wij and aggregation
factors Pi of each branch. Additionally, each criterion of Math, Physics, and Literature are represented by fuzzy sets High Math,
High Physics, and High Literature respectively.

Table 4, shows the normalized results of the PFS for the student evaluation. Also it shows the normalized results of
Choquet Integral for the same data.



Fig. 8. Student PFS for qualitative marks.

Table 4
Qualitative grading of students using CI & FS.

Student Mathematics Physics Literature Choquet Integral Fuzzy signature

Euler 18 16 10 0.69 0.69
Einstein 10 12 18 0.68 0.68
Hercules 14 15 15 0.74 0.74
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According to the results shown in Table 4, it is clear that PFS can predict the same output as the Choquet Integral. We
further extended the example and tested the both models with 200 records of students data. The results of the experiment
are shown in the Fig. 9. The two plots, namely Integral results and Signature results in Fig. 9 show the results of the two meth-
ods Choquet Integral and Fuzzy Signature respectively.

Based on the results shown in Fig. 9, it can be seen that the students evaluation Fuzzy Signature can consistently approx-
imate the results given by the Choquet Integral for the qualitative students evaluation problem. Therefore, one may come to
a conclusion that there is no need for a CSDM model accompanied by fuzzy signatures, as the CSDM model together with
Choquet Integral can solve the problem. In the next section, we show that the fuzzy signatures outperform the Choquet Inte-
gral in two real world problems. Further, as we discussed earlier, all Fuzzy Integrals suffer from the problem of exponential
growth of fuzzy measure parameters (weights) with respect to the number of criteria. Our CSDM models have reduced space
and time complexity, may need less information for decision making, and simplify the approximation of the aggregation of
information compared to that of MCDM systems.
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4. Methods of learning WRAO and fuzzy measures

In this section we briefly explain two methods to learn WRAO and Fuzzy Measure parameters from empirical data. These
two methods have been used for the experiments in the next section.

4.1. Levenberg–Marquardt learning of WRAO for fuzzy signatures

In this section we discuss the method of learning WRAO from real world data briefly, with more detailed explanations to
be found in [28]. First, to avoid the first two constraints on the weighted relevance factor wq. . .ij in Definition 9. We represents
the weighted relevance factor wq. . .ij using the following sigmoid function:
wq...ij ¼
1

1þ e�kq...ij
ð8Þ
where kq...ij 2 R. Now, the Eq. (7) can be modified as follows,
aq...i ¼
1
n

Xn

j¼1

aq...ij �
1

1þ e�kq...ij

� �� 	pq...i
" # 1

pq...i

ð9Þ
The pq. . .i and kq. . .ij are called the aggregation factor of branch q . . . i and the weighted relevance factor of sub-branch q . . . ij of
the fuzzy signature in Fig. 7, respectively. This form of WRAO (9) can be readily used for gradient based learning.

The parameters we need to learn are the aggregation factor pq. . .i and weighted relevance factors kq. . .ij for each WRAO at
each node of the fuzzy signature structure in Fig. 7. First we can obtain the partial derivatives of the Eq. (9) w.r.t. pq. . .i
@aq...i

@pq...i
¼

a
1�pq...i

q...i

np2
q...i

" # Xn

j¼1

t lnðtÞ � nt0 ln t0ð Þ
( )

ð10Þ
where t ¼ ðaq...ijwq...ijÞpq...i and t0 ¼ a
pq...i

q...i . Similarly, we obtain the partial derivatives of the Eq. (9) w.r.t. kq. . .ik
@aq...i

@kq...ik
¼ 1

n

Xn

j¼1

aq...ij �wq...ij
� �pq...i

" # 1
pq...i
�1

� T ð11Þ
where
wq...ij ¼
1

1þ e�kq...ij
and T ¼

dð aq...ik �wq...ik

� �pq...i Þ
dkq...ik

( )

. We have used the Levenberg–Marquardt (LM) method [23,25] for learning WRAO parameters. The LM algorithm is a widely
used advanced optimization algorithm that outperforms simple gradient descent and other gradient methods when applied
in a wide variety of problems. The LM algorithm is a pseudo-second order, Sum of Square Error (SSE) based optimization
method, in which the Hessian matrix is estimated using the gradients [23,25]. The two equations, (10) and (11) above, to-
gether with the chain rule for partial derivatives have been used to calculate the Jacobian, which is then used to approximate
the Hessian matrix for LM learning. A detailed discussion of the method of using LM for learning WRAO can be found in [31].

4.2. Automatic extraction of fuzzy measure parameters for fuzzy integrals

Learning of fuzzy measure parameters from data has been considered by many researchers [2,24,46]. Beliakov and his
team in [2,3], have shown a method of learning fuzzy measure parameters for Fuzzy Integrals from data. Further, they pro-
vided a software package, called Aggregation Operator Approximation Tool (AOTool [1]) and the Fuzzy Measure Tool [2] to
learn Fuzzy Measure parameters for both Choquet and Sugeno Integrals. We used the Fuzzy Measure tool to learn Fuzzy
Measure parameters for the Fuzzy Integrals. This sub-section will briefly discuss the method, with more detailed discussion
to be found in [2,3].

Definition 10. The Möbius transformation of a fuzzy measure v is a set function defined for every A # N
MðAÞ ¼
X
B # A

ð�1ÞjAnBjvðBÞ ð12Þ
The möbius transformation is invertible, and one can recover v by using its inverse, called the Zeta transform
aðAÞ ¼
X
B # A

MðBÞ; where 8A # N ð13Þ
The Choquet Integral in Eq. (2) can be represented in an alternative way using the Möbius transformation in Eq. (12) [16,2]
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Cvðf Þ ¼
X
A # N

MðAÞhAðxÞ ð14Þ
where hA(x) = mini2Axi.
As we mentioned earlier, the computational complexity of fuzzy measures are exponential and it becomes too large when

the number of inputs goes above 7. Grabisch in [16] discussed that additive fuzzy measures can reduce the 2n number of coef-
ficients to n, but this may reduce the expressive power of the Fuzzy Integral. He suggested in [16] a method to reduce the
computational complexity based on k-order additivity and keep the expressive power of the Choquet Integral to a certain ex-
tent. The following interpretation of the definition of k-order additivity can be found in [2].

Definition 11. A fuzzy measure v is called k-additive (1 6 k 6 n) if its Möbius transformation verifies M(A) = 0 for any subset
A with more than k elements, j A jP k, and there exists a subset B with k elements such that M(B) – 0.

Now, the goal is to find a fuzzy measure v, such that the function f = Cv approximates the desired result yi, such that
f(Xi) 	 yi, where i 2 {1, . . . ,m} and m 2 N. The satisfaction of the approximate equalities f(Xi) 	 yi is translated into the min-
imization problem given by
minimize kf ðXiÞ � yik ð15Þ
Now, in the case when f is the Choquet Integral with respect to a fuzzy measure v, Cv, the above expression can be written as
follows and it is subject to satisfying the basic properties of the Choquet Integral [34]
minimize kCvðx1i; . . . ; xniÞ � yik ð16Þ
Now according to Beliakov [2], using Definitions 10 and 11, Eq. (16) can be translated into the following constrained opti-
mization problem
minimize k
X

A :jAj6k

hAðxiÞmA � yik ð17Þ
such that the following constraints are satisfied
X
B # A : j2B;jBj6k

mB P 0

8A # N; jAjP 1; and all j 2 A

mj P 0; j ¼ 1; . . . ; n;X
B # NjkBj6k

mB ¼ 1
It appears that in AOTool, [1,2], the minimization problem in the expression (17) is further converted to a linear program-
ming problem and the l1 norm is used to calculate the error.

5. Two experiments: two fuzzy integrals & fuzzy signatures

In this section, two real world problems, namely High Salary Selection of employees and SARS patient classification prob-
lem are used, applying Choquet and Sugeno Integrals and Polymorphic Fuzzy Signature (PFS). The aim of the experiments are
to investigate and demonstrate if possible the success of the CSDM method and the effectiveness of hierarchical fuzzy sig-
natures in decision making.

5.1. High salary selection problem

We select the High Salary Selection problem, which is discussed in [12], as the first experiment. The problem is to find the
degree of relevance of a high salary based on the contacts, age, and work experience of an employee. Fig. 10 shows a High
Salary Selection Polymorphic Fuzzy Signature, which is obtained using domain expert knowledge, for the high salary selec-
tion problem. Note that @i and wi in Fig. 10 represent the aggregation function and weighted relevance of the node i,
respectively.

In general, Choquet and Sugeno Integrals take normalized inputs and produce the output in the same range, which is a
rank between [0,1] of likelihood of getting a high salary. On the other hand, Fuzzy Signatures take fuzzified inputs and pro-
duce the fuzzy values as the output. Fuzzy Signatures for the High Salary Selection problem, give the degree of membership
in the high salary fuzzy set of an employee’s salary as the output result. We faced a practical issue at the very beginning of
the experiment. That is to decide which output target among the two output distributions, that is normalized output and
fuzzyfied output, is best for learning and testing of Fuzzy Integral based systems and Fuzzy Signature based system. Another
option may be to consider using the Fuzzy Integrals to aggregate the fuzzyfied input data, but it is obvious that this can in-
crease the computational complexity of the Fuzzy Integral based system, as this method increases the number of input
dimensions by at least three times more than the number of normalized input dimensions.



Fig. 10. High salary selection PFS.
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Also, it is clear that the fuzzyfied output target is the best for the experiments with the Fuzzy Signatures as Fuzzy Signa-
tures take fuzzy values for the inputs. Moreover, for Fuzzy Integrals the fuzzyfied output target values can be hard to learn as
they are fuzzified, according to high salary fuzzy set, from the normalized distribution of output data. For the comprehen-
sibility of this experiment, we decided to use Choquet Integral and Fuzzy Signatures both with normal and fuzzyfied output
targets to discover which output target is suitable for each method.

We used the two learning methods explained in the previous section to extract fuzzy measures and WRAO for the Fuzzy
Integrals and Polymorphic Fuzzy Signature respectively for the High Salary Selection problem. The Table 5 shows the results
of the experiment for all four possibilities, that is Choquet Integral and Fuzzy Signatures with both normal and fuzzyfied out-
put targets. According to the table the Choquet Integral shows best results with the normalized outputs and the High Salary
Selection PFS shows best results with the fuzzyfied outputs as expected. Therefore, the normalized output data has been se-
lected for the experiment with Fuzzy Integrals and Fuzzified output has been selected for experiments with Polymorphic
Fuzzy Signatures in this section.

The next practical issue arises when we need to compare the results. Figs. 11 and 12, and the mean squared error (MSE)
shown in Table 5 experiment may illustrate the comparison of two methods. But this also does not express the situation
clearly, as the values of numerical error such as MSE of the results of two methods depend on the desired output distribu-
tions given to each method. Therefore we measure classification error (see Section 5.1.1) to compare and visualize the dif-
ference of the error of the results of the two methods clearly. The next subsection briefly explains the form of the calculation
of classification error we used.

5.1.1. Classification error
We formulate the Classification Error (CLE) in the following way. First, we specify that both desired output and predicted

output of an experiment are in the range [0,1]. Next, we define a set of rules for the classification and these rules are visu-
alized in the following Fig. 13.

According to Fig. 13, there are 3 categories of classifications that can occur, they are Good, Bad, and Very Bad. Now we
assume the pair of predicted and desired values, of the ith input, respectively taken as X and Y coordinates of the point Pi

on the two dimensional classification error rule space Fig. 13. The classification error of an arbitrary point Pi can be written
as
CLEðPiÞ ¼
0 if Pi 2 Good
0:5 if Pi 2 Bad
1 if Pi 2 Very Bad

8><>:

Let us consider the 4 straight lines, B1, B2, G1, and G2, in Fig. 13. In this experiment, they are equivalent to,
Table 5
High salary selection experiment.

Fuzzy output Crisp output

MSE train MSE test MSE train MSE test

Choquet 0.0837 0.1052 0.0266 0.0262
PFS 0.0149 0.0152 0.0216 0.0195
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Fig. 11. Training results of salary experiment: Choquet integral.

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

M
em

be
rs

hi
p

Expected Membership

Predicted
Desired

Fig. 12. Training results of salary experiment: PFS.
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B1 � y� x� 0:5
G1 � y� x� 0:2
G2 � y� xþ 0:2
B2 � y� xþ 0:5
Now, The classification error of an arbitrary point Pi can be calculated as,
CLEðPiÞ ¼

0 if G1ðPiÞ 6 0 and G2ðPiÞP 0
0:5 if ðB1ðPiÞ 6 0 and G1ðPiÞ > 0Þ or

ðG2ðPiÞ < 0 and B1ðPiÞP 0Þ
1 if B1ðPiÞ > 0 or B2ðPiÞ < 0

8>>><>>>:
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Next, the Sum of Classification Error (SCLE) for a set of data with m records can be calculated as,
SCLEðPÞ ¼
Xm

i¼1

CLEðPiÞ where m 2 N ð18Þ
Now, we can use the classification error to visualize and classify the results of the experiments. Let us continue experiment 1,
Table 6 shows the MSE and SCLE for both training and testing phases of the experiment with all four possibilities we dis-
cussed earlier. Figs. 14 and 15 illustrate the classification error of the best test results for Choquet Integral and High Salary
Table 6
High salary selection experiment.

MSE train SCLE train MSE test SCLE test

Choquet 0.0266 54.5 0.0262 55.5
Sugeno 0.0283 61.5 0.0274 55.5
PFS 0.0149 23.5 0.0152 20
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Fig. 14. Test classification error salary: Choquet integral.
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Fig. 15. Test classification error salary: PFS.
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Fig. 16. Test classification error salary: Sugeno integral.
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Selection PFS respectively. Additionally, Fig. 16 illustrates the testing results of the Sugeno Integral with normalized data,
which is best for Fuzzy Integrals.

The results of this experiment show that Fuzzy Integrals can learn and classify the data in High Salary Selection problem.
But, High Salary Selection PFS has a much lower sum of classification error (SCLE) and lower mean squared error (MSE) as
shown in Table 6, compared to that of the Fuzzy Integrals. Further, the PFS model has reduced SCLE in the testing phase com-
pared to that of the training phase, which importantly shows that PFS training is generalizing and avoiding over fitting prob-
lems as well.



Fig. 17. SARS Patient classification PFS.
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Fig. 18. Training predicted vs desired SARS: Choquet integral.
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5.2. SARS patient classification problem

In this experiment we use SARS patient classification problem to compare the performance of the two methods, Fuzzy
Integrals and PFS.

Medical practitioners know that for certain diseases, such as SARS, they need to check the patient for possible fever,
hypertension, conditions of nausea, and abdominal pain [20,35,44]. In addition, it is fairly important to monitor the fever
regularly during the day, as well as the blood pressure. Fig. 17 shows a SARS polymorphic fuzzy signature, which is con-
structed based on domain expert knowledge. Each symptom check has been divided into a number of doctors’ diagnosis lev-
els, such as slight, moderate, and high for body temperature (fever), low, normal, and high for the two measurements of blood
pressure, slight, medium, and high for nausea, and slight, and high for abdominal pain. The SARS fuzzy signature contains three
levels of hierarchies, which can be aggregated using different aggregations.

In Fig. 17, the notations aij, @ij, and wij represent the input value, aggregation function, and weight for the branch ij of the
SARS PFS. Test and train data sets which were used for the experiments, are a combination of SARS, blood pressure, pneu-
monia, and normal patients’ data. The desired output of this experiment is a classification that needs to give a full degree of
confidence, i.e. 1, for the SARS patient data and zero degree of confidence for the other condition, and normal data.

Figs. 18–20 show the training results of Choquet and Sugeno Integrals and PFS. Figs. 21–23 show the test results of the
two methods. Table 7 shows the MSE and SCLE for training and testing phases of these methods.
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Fig. 19. Training predicted vs desired SARS: Sugeno integral.
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Fig. 20. Training predicted vs desired SARS: PFS.
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The results of the second experiment show that Fuzzy Integrals can not learn or classify the SARS patients data properly.
The SARS patients classification PFS has very much lower SCLE and MSE as shown in Table 7, compared to that of the Fuzzy
Integrals. Further, in this experiment, we also observed that the PFS model has reduced SCLE in the testing phase compared
to that of the training phase.

From the results of the two real world experiments, it is clear that our PFS outperforms the Fuzzy Integrals in both exper-
iments. In the next sub-section, we discuss the reasons for the improved performance of the Fuzzy Signatures against the
Fuzzy Integrals.
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Fig. 21. Test predicted vs desired SARS: Choquet integral.
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Fig. 22. Testing predicted vs desired SARS: Sugeno integral.
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5.3. Discussion of experiments

As we pointed out earlier, a CSDM system, such as Fuzzy Signatures, uses a set of hierarchically organized local aggrega-
tion functions to approximate the desired global preference function of the system. On the other hand, flat decision making
systems such as Fuzzy Integrals try to approximate the global preference relation using one aggregation function. In this pa-
per, we argued that the approximation of a global preference relation using a set of local aggregation functions is necessarily
less complex. Further, the approximation of the same global preference relation using a single aggregation function is much
harder. Thus this is an advantage for CSDM systems over MCDM systems. This argument is supported by the success of the
Fuzzy Signature (CSDM method) based system over the Fuzzy Integral (MCDM method) based systems in the two real world
experiments. Also, we have shown that for the students evaluation problem, Fuzzy Signatures can predict the same results as
Choquet Integral.
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Fig. 23. Test predicted vs desired SARS: PFS.

Table 7
SARS Patient classification experiment.

MSE train SCLE train MSE test SCLE test

Integral 0.04253 13.5 0.04948 16.5
PFS 0.0017 0.5 0.0001 0
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The WRAO has been derived similarly to the form of the generalized weighted means function discussed in [11] in order
to satisfy the Weighted Relevance Aggregation concept discussed in [28]. The WRAO is a more generalized version of
weighted mean as it has weaker constraints on weights, that is

Wn
j¼1wq...ij ¼ 1, Definition 9, compared to needing to sum

to 1 in the generalized weighted mean [11]. Grabisch in [14] has shown that the generalized weighted mean is a special class
of Choquet Integral when the Fuzzy Measure used by Choquet Integral is additive and the aggregation factor p > 0. Further,
Grabisch suggested that geometric mean, p ? 0 and the harmonic mean, p ? � 1 are not Fuzzy Integrals. An implication is
that WRAO also has a subset, which is a special case of Choquet Integral. The authors are now working in this direction to
show the relation between WRAO and Choquet Integral mathematically.

Further, an interesting question is to investigate why WRAO has performed better than the Choquet Integral (Fuzzy Inte-
grals). The first reason may be because WRAO may represent only a special class of Choquet Integral where this subset can
represent the quasi-optimization problem better. That is, it gives a smoother optimization surface towards the best local
minimum for the learning algorithm. On the other hand, a second reason may be that WRAO is not a proper subset of Cho-
quet Integral and uses a class of aggregation functions that is outside the Choquet Integral to outperform it, again by pro-
viding a smoother optimization surface.

Here we discussed two major reasons to explain the performance of Fuzzy Signatures accompanied by the WRAO against
the Choquet Integral. Both reasons point to new research directions, towards the development and understanding of the role
of aggregation functions in intelligent decision making systems.
6. Conclusion

We discussed the MCDM paradigm and the role of Fuzzy Integrals in developing intelligent decision making systems.
Then, we introduced the CSDM model in order to construct ‘human like’ hierarchical decision making systems. The qualita-
tive student evaluation example, which is common in the MCDM literature, has been used to illustrates the difference
between MCDM and CSDM models. Finally, using two real world experiments, namely High Salary Selection of employees
and SARS patients classification problems, the performance of the Choquet Integral and Fuzzy Signatures has been compared.
The results of the two experiments show that Fuzzy Signatures together with WRAO outperformed the Fuzzy Integrals. Our
conclusion is that CSDM systems simplify the approximation of the aggregation functions to achieve the global preference
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relation of the problem, and WRAO represents a class of aggregation functions which simplify the learning and provide more
adaptation to the problem.
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